

Simulink Basics for Engineering Applications

Ashok Krishnamurthy and Siddharth Samsi

SC 09 Education Program, Saturday 11/14/09

Basic concepts

- Simulink provides a graphical user interface (GUI) for building models as block diagrams, using click-and-drag mouse operations.
- Why use Simulink?
 - You can draw the models as you would with pencil and paper.
 - Designs are hierarchical, so that levels of details can be hidden or made explicit.
 - Simulations are interactive, so you can change parameters "on the fly".
 - Simulink includes a comprehensive block library of sinks, sources, linear and nonlinear components, and connectors.
 - C code or executables can be generated from a Simulink model by using Real-Time Workshop.

Associated Products - 1

- Stateflow
- Simulink Performance Tools
- Sateflow Coder
- Real-time Workshop
- Real-time Workshop Embedded Coder
- Real-time Workshop ADA Coder
- Real-time Windows Target

Associated Products - 2

- xPC Target
- xPC Targetbox
- xPC Target Embedded Option
- Simulink Report Generator
- Requirements Management Interface
- Virtual Reality
- SimMechanics
- Embedded Target MPC555

Simulink Blocksets

- Aerospace
- CDMA Reference
- Communications
- Dials and Gauges
- DSP
- Fixed Point
- Nonlinear Control Design
- Power Systems

A blockset is a library of blocks

Empower. Partner. Lead.

Oleo Supercomputer Center

A Typical Simulink Model

• Includes Sources, Systems and Sinks.

A Typical Simulink Model

A typical Simulink model includes Source, System and Sink.

Block Choices in Simulink

Now, let's build a simple model!

This model plots the sign of the input signal.

Step1: Start Simulink and choose New then Model from the File menu.

🙀 Library: simulink3	
<u>File Edit View Format H</u> elp	
Sources Sinks Continuous Discrete Math Functions & Tables Nonlinear Signals & Systems Blocksets & Toolboxes Simulink Block Library 4.0 Copyright (c) 1990-2000 The MathWorks, Inc. Demos	New Model Ctrl+N □pen Ctrl+D □lose Ctrl+W Save Ctrl+S Save Ctrl+S Save_as Source control
·	Model properties
untitled1	Print Ctrl+P Print set <u>u</u> p
<u>File Edit View Simulation Format Tools Help</u>	Exit MATLAB Ctrl+Q
F 100% ode45	
r. Lead.	Ohio Supercomputer Center

Step2: Copy the needed blocks by using Drag and Drop.

er

Step3: Complete the connection.

Step4: Set the block parameters.

Block Parameters: Sine Wave 📃 💌	属 untitled 1	×			
Sine Wave	<u>F</u> ile <u>E</u> dit ⊻	(iew <u>S</u> imula	ation Forma	<u>t</u> T <u>o</u> ols <u>H</u> elp	
Output a sine wave.		3 🚭 🐰	, B 🔒	ାର ଜ 🎽	🖪 🦫 🛞
Parameters					
Amplitude:	5				
		₫	▶╡	►[]	
Frequency (rad/sec):	Sine∀	Vave	Sign	Scope	
1					
Phase (rad):					
0	F 100%			ode45	/_
Sample time:					
0	Dout	ble click	a block t	to open its h	lock
Interpret vector parameters as 1-D	para	meters.	a DIOCK	to open its t	
OK Cancel Help Apply		<u> </u>			
			- <u></u>		-Ծ- 🗊
mnower Partner Lend					
inpunction and the second			Oh	10 Supercom	muter Center

Example -- Step 5

Step5: Setup the simulation parameters.

<u>S</u> imulation	Forma <u>t</u>	F <u>o</u> ols	<u>H</u> elp									
<u>S</u> tart		(Ctrl+T		🥠 Simu	lation Pa	rameters:	untitled	i1		_ 🗆 ×	
Stop Simulatio	on naramet	ers (Ctrl+F		Solver	Workspar	ce 1/0 D)iagnostic:	s Advanced	Real-Time \	Norkshop	
✓ <u>N</u> ormal <u>E</u> xternal					- Simul Start	ation time time: 0,0		Stop	time: 10.0			
Start	time /				- Solve Type:	r options	step 💌	ode4	15 (Dormand-Pr	ince)	•	
					Max :	step size:	auto		Relative toler	ance: 1e-3		
Stop	time 🦯				Min s	tep size:	auto		Absolute tole	rance: auto		
					Initial	step size:	auto					
Solve	er type 🦯				Outpu Refir	ut options ne output		•	Refine f	actor: 1		K
				unn				OK	Cancel	Help	Apply	
Empower. Pa	rtner. Lead.									Ohio Sup	ercompute	r Cente

Step6: Start simulation.

Need help?

Manipulating blocks

Labels and Annotations

Dividing a line into segments

Step1: Select the line.

Step2: Position the pointer on the line where you want the vertex.

Step3: While holding down the Shift key, press and hold down the mouse button.

Step4: Drag the pointer to the desired location.

Step5: Release the mouse button and Shift key.

Dividing a line into segments

Step1: Position the pointer on the vertex, then press and hold down the mouse button.

Step2: Drag the pointer to the desired location.

Step3: Release the mouse button.

Inserting a block in a line

Step1: Position the pointer over the block and press the left mouse button.

Step2: Drag the block over the line in which you want to insert the block.

Step3: Release the mouse button to drop the block on the line.

Example 2: Revisit van der Pol's equation

• Recall that the equation is

 d^2x/dt^2 - $\mu(1\text{-}x^2)dx/dt + x = 0$

• Convert to first order ODEs using

 $dy_1/dt = y_2$ $dy_2/dt = \mu(1-y_1^2)y_2-y_1$

where $y_1 = x$, and $y_2 = dx/dt$

- In Simulink, start with two integrator blocks, one for y_1 , another for y_2 .
- Then use Sum, Product and Gain blocks to create dy_1/dt and dy_2/dt as inputs to the integrator blocks.

Simulink model of van der Pol

_ 🗆 × 🤣 Scope 🔎 🎗 🎗 🗛 🖪 🛅 🎒 -5 Ohio Supercomputer Center

Example 3: Leaky Integrator

- An ideal integrator is described by the equation dy/dt = x(t), where y(t) is the output and x(t) is the input.
- A leaky integrator is described by the equation $dy/dt = x(t) \mu y(t), \mu > 0$
- The solution, for x(t) = Ku(t), is $y(t) = (K/\mu) (1 - e^{-\mu t})u(t)$
- If we want the steady state output for a constant input to be the same constant, we can add a gain term of μ at the output. $y_o(t) = \mu y(t)$

Simulink model for leaky integrator

Output of leaky integrator Output $\mu = 0.1$ $\mathbf{K} = 1$ -5 . 0 Time offset: 0 4 $\mu = 0.1$ K = 4Time offset: 0 Time offset: 0 $\mu = 0.9$ K = 4 Empower. Partner. Lead. Time offset: 0 Time offset: 0

r Center

Subsystems

Subsystems can hide the complexity of the subsystems from the user, which can make your model clearer. There are two ways to create Subsystems.

You can create a Subsystem by adding the Subsystem block from Signals & Systems. Then you can edit the Subsystem by doubling clicking the Subsystem block.
You can create create the subsystem by grouping blocks from an existing system.

Ohio Supercomputer Center

Leaky integrator subsystem

2. Choose Create Subsystem from the Edit menu

Can't undo		Ctrl+Z	
Can't redo		Ctrl+Y	
Cut		Ctrl+X	
Сору		Ctrl+C	
Paste		Ctrl+V	
Clear		Delete	
Select all		Ctrl+A	
Copy model t	o clipboard		
Find		Ctrl+F	
Create subsy	Ctrl+G		
Mask subsys	Ctrl+M		
Look under m	Ctrl+U		
Link options		Þ	

Using the leaky integrator subsystem

• You can now use the leaky integrator subsystem like any other block

• Double clicking the subsystem opens the subsystem and shows the blocks inside

Example 4: Envelope Detection using Leaky Integrator

Stepped Sine Wave

Results for mu =1 for Leaky Integrator

output

Time offset: 0

Conter Center

Comparing Results for different mu values

Mu = 1

Empower. Partner. Lead.

$$Mu = 5$$

Ohio Supercomputer Center